\(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx\) [196]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 181 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=-\frac {49 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {13 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}+\frac {49 \sin (c+d x)}{10 a^3 d \sqrt {\cos (c+d x)}}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3}-\frac {8 \sin (c+d x)}{15 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2}-\frac {13 \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right )} \]

[Out]

-49/10*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d-13/6*(cos(1
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+49/10*sin(d*x+c)/a^3/d/c
os(d*x+c)^(1/2)-1/5*sin(d*x+c)/d/(a+a*cos(d*x+c))^3/cos(d*x+c)^(1/2)-8/15*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^2/co
s(d*x+c)^(1/2)-13/6*sin(d*x+c)/d/(a^3+a^3*cos(d*x+c))/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2845, 3057, 2827, 2716, 2719, 2720} \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=-\frac {13 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}-\frac {49 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {49 \sin (c+d x)}{10 a^3 d \sqrt {\cos (c+d x)}}-\frac {13 \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} \left (a^3 \cos (c+d x)+a^3\right )}-\frac {8 \sin (c+d x)}{15 a d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3} \]

[In]

Int[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^3),x]

[Out]

(-49*EllipticE[(c + d*x)/2, 2])/(10*a^3*d) - (13*EllipticF[(c + d*x)/2, 2])/(6*a^3*d) + (49*Sin[c + d*x])/(10*
a^3*d*Sqrt[Cos[c + d*x]]) - Sin[c + d*x]/(5*d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3) - (8*Sin[c + d*x])/(1
5*a*d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2) - (13*Sin[c + d*x])/(6*d*Sqrt[Cos[c + d*x]]*(a^3 + a^3*Cos[c
+ d*x]))

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2845

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rubi steps \begin{align*} \text {integral}& = -\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3}+\frac {\int \frac {\frac {11 a}{2}-\frac {5}{2} a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx}{5 a^2} \\ & = -\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3}-\frac {8 \sin (c+d x)}{15 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2}+\frac {\int \frac {\frac {41 a^2}{2}-12 a^2 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx}{15 a^4} \\ & = -\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3}-\frac {8 \sin (c+d x)}{15 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2}-\frac {13 \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right )}+\frac {\int \frac {\frac {147 a^3}{4}-\frac {65}{4} a^3 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{15 a^6} \\ & = -\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3}-\frac {8 \sin (c+d x)}{15 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2}-\frac {13 \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right )}-\frac {13 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{12 a^3}+\frac {49 \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{20 a^3} \\ & = -\frac {13 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}+\frac {49 \sin (c+d x)}{10 a^3 d \sqrt {\cos (c+d x)}}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3}-\frac {8 \sin (c+d x)}{15 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2}-\frac {13 \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right )}-\frac {49 \int \sqrt {\cos (c+d x)} \, dx}{20 a^3} \\ & = -\frac {49 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {13 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}+\frac {49 \sin (c+d x)}{10 a^3 d \sqrt {\cos (c+d x)}}-\frac {\sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3}-\frac {8 \sin (c+d x)}{15 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2}-\frac {13 \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right )} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.44 (sec) , antiderivative size = 364, normalized size of antiderivative = 2.01 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {\cos ^6\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {4 i \sqrt {2} e^{-i (c+d x)} \left (147 \left (1+e^{2 i (c+d x)}\right )+147 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )-65 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}+\frac {\left (1284 \cos \left (\frac {1}{2} (c-d x)\right )+921 \cos \left (\frac {1}{2} (3 c+d x)\right )+1243 \cos \left (\frac {1}{2} (c+3 d x)\right )+374 \cos \left (\frac {1}{2} (5 c+3 d x)\right )+670 \cos \left (\frac {1}{2} (3 c+5 d x)\right )+65 \cos \left (\frac {1}{2} (7 c+5 d x)\right )+147 \cos \left (\frac {1}{2} (5 c+7 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^5\left (\frac {1}{2} (c+d x)\right )}{16 d \sqrt {\cos (c+d x)}}\right )}{15 a^3 (1+\cos (c+d x))^3} \]

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^3),x]

[Out]

(Cos[(c + d*x)/2]^6*(((-4*I)*Sqrt[2]*(147*(1 + E^((2*I)*(c + d*x))) + 147*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)
*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] - 65*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*S
qrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 +
 E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) + ((1284*Cos[(c - d*x)/2] + 921*Cos[(3*c + d*x)
/2] + 1243*Cos[(c + 3*d*x)/2] + 374*Cos[(5*c + 3*d*x)/2] + 670*Cos[(3*c + 5*d*x)/2] + 65*Cos[(7*c + 5*d*x)/2]
+ 147*Cos[(5*c + 7*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2]^5)/(16*d*Sqrt[Cos[c + d*x]])))/(15*a^3*(1 + Cos
[c + d*x])^3)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(554\) vs. \(2(213)=426\).

Time = 4.15 (sec) , antiderivative size = 555, normalized size of antiderivative = 3.07

method result size
default \(-\frac {-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (65 F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (65 F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (65 F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+588 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1634 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1488 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-439 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(555\)

[In]

int(1/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^3,x,method=_RETURNVERBOSE)

[Out]

-1/60*(-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1
/2*c)^2)^(1/2)*(65*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*
x+1/2*c)*sin(1/2*d*x+1/2*c)^4+4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(65*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*EllipticE(cos(1/2*d*x+1/2*c
),2^(1/2)))*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^
(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(65*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*Ellip
ticE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)+588*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*
sin(1/2*d*x+1/2*c)^8-1634*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6+1488*(-2*s
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-439*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+
1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^
(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 394, normalized size of antiderivative = 2.18 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {2 \, {\left (147 \, \cos \left (d x + c\right )^{3} + 376 \, \cos \left (d x + c\right )^{2} + 295 \, \cos \left (d x + c\right ) + 60\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 65 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{4} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 65 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{4} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 147 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{4} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 147 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{4} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{4} + 3 \, a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + a^{3} d \cos \left (d x + c\right )\right )}} \]

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

1/60*(2*(147*cos(d*x + c)^3 + 376*cos(d*x + c)^2 + 295*cos(d*x + c) + 60)*sqrt(cos(d*x + c))*sin(d*x + c) - 65
*(-I*sqrt(2)*cos(d*x + c)^4 - 3*I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^2 - I*sqrt(2)*cos(d*x + c)
)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 65*(I*sqrt(2)*cos(d*x + c)^4 + 3*I*sqrt(2)*cos(d
*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + I*sqrt(2)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*s
in(d*x + c)) - 147*(I*sqrt(2)*cos(d*x + c)^4 + 3*I*sqrt(2)*cos(d*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + I*sqr
t(2)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 147*(-I
*sqrt(2)*cos(d*x + c)^4 - 3*I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^2 - I*sqrt(2)*cos(d*x + c))*we
ierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^3*d*cos(d*x + c)^4 + 3*a^3
*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + a^3*d*cos(d*x + c))

Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {1}{\cos ^{\frac {9}{2}}{\left (c + d x \right )} + 3 \cos ^{\frac {7}{2}}{\left (c + d x \right )} + 3 \cos ^{\frac {5}{2}}{\left (c + d x \right )} + \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx}{a^{3}} \]

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**3,x)

[Out]

Integral(1/(cos(c + d*x)**(9/2) + 3*cos(c + d*x)**(7/2) + 3*cos(c + d*x)**(5/2) + cos(c + d*x)**(3/2)), x)/a**
3

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)^3*cos(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

[In]

int(1/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^3),x)

[Out]

int(1/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^3), x)